159 MEASURES OF CENTRAL TENDENCY

Raw data are difficult to comprehend. Classification Raw understanding of many a time, quick and easy understanding of mature of data. A single representation politates, many and easy understanding of nature of data. A single representative value the purpose in a better manner. the purpose in a better manner.

Quantitative data in a mass exhibit certain general They show a tendency to concentrate at values. usually somewhere in the values. usually somewhere in the centre of the Measures of this tendency are called measures central tendency or averages. This tendency toward deniralization, though not universal, has established the measure of central tendency" to describe an The term is imbedded in statistical language, but it always pertinent.

(Simpson and Kafka in Basic Statistics - Page 127)

An average is a value which is typical or representative is set of data. (Murray R. Spiegel in Theory and Problems (Statistics-Page 45)

A measure of central tendency gives a single representative value for a set of usually unequal values. The single value is the point of location around which the advidual values of the set cluster. The measures of central undency are hence known as 'measures of location'. They me popularly called averages. Various measures of central undency are the following:

- 1. Arithmetic Mean
- 2. Median
- 3. Mode
- 4. Geometric Mean
- 5. Harmonic Mean

Weighted Arithmetic Mean and positional values, viz., quartiles, Deciles and Percentiles are discussed later. Moving Averages are considered in the chapter titled Analysis of Time Series'.

Besides them other averages are also there as seen werleaf.

ARITHMETIC MEAN

Definition: Arithmetic Mean is the total of the values of the values the items divided by their number.

A.M. is the abbreviation and X (read 'X bar') is the aymbol for arithmetic mean. Arithmetic mean is also called

Methods of Finding Arithmetic Mean:

All the possible seven types of data are considered Mean can be calculated by

- (i) Direct Method
- (ii) Short cut Method and
- (iii) Step Deviation Method.

All the methods give the same result for a problem All the methods are illustrated.

Data - Type I (Individual Observations or Raw Data)

When the observed values are given individually such $X_1, X_2, X_3, \dots X_N$ as the methods of calculation of arithmetic mean are as follows

Direct Method:

Arithmetic Mean =
$$\frac{\text{Total of the observations}}{\text{Number of the observations}}$$

$$= \frac{X_1 + X_2 + X_3 + \dots + X_N}{N}$$

$$= \frac{\sum X}{N}$$

The symbol \(\text{(read 'sigma') denotes 'sum' or 'total'.}\) ∑X denotes the total of all the 'X' values. The calculation consists of the following two steps:

- Step 1. Denote the given observations by X and find their total, $\sum X$.
- Step 2. Identify N, the number of observations and divide $\sum X$ by N.

Example 1: The expenditure of 10 families in Rupees are given below.

A B C D \mathbf{E} F H I G ramily 75 500 42 250 40 36 30 70 10 8 Calculate the arithmetic mean.

colution: X - Expenditure; N = 10.

Family	Expenditure (Rs.)
Falling	A 20	
A	30 70	$\overline{X} = \frac{\sum X}{N}$
C	10 75	
D	500	$=\frac{1061}{10}$
F	$\begin{matrix} 8 \\ 42 \end{matrix}$	= 106.1
H		The arithmetic mean is Rs. 106.10.
J	40 36	
Total	$\sum X = 1061$	The Control of the Control

Short cut Method. Arithmetic mean may be

obtained also as
$$\overline{X} = A + \left(\frac{\sum d}{N}\right)$$

where A - assumed mean or arbitrary origin and

d (=X-A) are the deviations of the observations (X)from assumed mean (A) and

 Σd is the total of the deviations (differences, X-A).

Any value between the minimum and the maximum of the values of X is assumed as A if it is not specified in a problem. A may or may not be one of the given X values.

X is the same whatever value is assumed for A.

The following four steps are involved in the calculation.

Step 1. Choose certain value for A if it is not specified in a problem.

Step 2. Find the deviations of X from A. That is, calculate d = X-A corresponding to each X.

Step 3. Find Σd .

Step 4. Identify N and find $\overline{X} = A + \left(\frac{\sum d}{N}\right)$

Illustration-1: Calculate mean x̄ from the following data:

Table 6.1

Roll Nos.	l	2	3	4	5	6	7	8	9	10
Marks	33	35	44	34	41	45	39	46	36	47

1. Direct Method

Steps: 1. Add up all the values of the variables x (marks) and find out Σx .

2. Divide $\sum x$ by their number of observation (N). Solution

Table 6.2

Roll Nos.	Marks x
1	33
2	35
3	44
4	34
5	41
6	45
7	39
8	46
9	36
10	47
N = 10	$\Sigma x = 400$

Formula

$$\overline{\mathbf{x}} = \frac{\sum \mathbf{x}}{\mathbf{N}}$$

where

 \bar{x} = Arithmetic mean

 $\sum x = Sum of variables$

N = Number of observations

The methods of calculation of arithmetic mean are

Just ted below. Wect Method: X1 occurs f times. The total of those f week X_1 imes. The total of those f_1 X_2 occurs f_2 times. The total of those f_2 values f_3 times. The total of those f_3 Ine total of those f_2 values X_3 occurs f_3 times. The total of those f_3 values = f_3 X_3 .

In a total of those f_3 values = f_3 f_4 f_4 f_5 f_6 f_6 f_7 f_8 f_8 manner the total of all the N(-f) f_8 f_8 fIn total of those f_3 values = $f_3 X_3$. In this manner the total of all the $N(=f_1+f_2+f_3+\ldots)$ if this manner $f_3 X_3+f_3 X_4+\ldots=\sum f_3 X_5$ $\int_{\text{polices}}^{\text{polices}} f_1 X_1 + f_2 X_2 + f_3 X_3 + \dots = \sum f X$

Thus, arithmetic mean = $\frac{\sum fX}{N}$

The calculation consists of the following four steps:

Step 1. Form a table with columns X and f.

Step 2. Form the next column with title fX. Multiply the values of X and f in pairs and enter the products in that column.

Step 3. Find $N(=\sum f)$ and $\sum fX$.

Step 4. Divide $\sum fx$ by N to get the value of \overline{X} .

Example 5: Calculate the mean number of persons

Total _{per} house. Given 5 No. of persons per house 30 25 25 No. of houses

Solution: X-No. of persons per house; f-No. of houses.

No. of person per house X	ns No.of houses f	fx		Mean ∑fx
A at h	10	20	\overline{X}	= N
2		75		400
3	25	120		
4	30	125		100
5	25			= 4
6	10	60		
Total	N=100	$\sum fx = 400$		

Short cut Method.

The formula for arithmetic mean:

B. For Discrete Series

I. Direct Method

In this method, the values of the variable are multiplied by their respective frequencies and the products so obtained and totalled. This total is divided by the total number of frequence of the second of the

Steps: 1. Multiply each variable by its frequency (fx)

- 2. Add all the fx (Σfx)
- 3. Divide Σfx by the total of frequency (N) or Σf

The formula is

$$\overline{X} = \frac{\sum fx}{\sum f}$$

 $\overline{\mathbf{x}}$ Arithmetic mean

 Σfx the sum of products

 Σf total of frequency

Illustration-3: Calculate the mean for the following

Table 6.5

No. of children born per family (x)	0	1	2	3	4	5 .	6
No. of families (f)	7	7	10	5	3	2	1

Solution

Table 6.6: Calculation of Mean.

Tubi	E 0.01	fx
х	f	4.
0 1 2 3 4 5 6	7 7 10 5 3 2	7 20 15 12 10 6
	$\Sigma f = 35$	$\Sigma fx = 70$

Formula

$$\overline{\mathbf{x}} = \frac{\sum f\mathbf{x}}{\sum f}$$

$$\overline{x} = \frac{70}{35} = 2$$

$$\bar{x} = 2$$

2. Short-cut Method

Steps: 1. Take any value from the variables (X) as assumed mean (A).

- 2. Find out deviations of each variable from the assumed mean (d = x-A) (where d = deviation, x = variable A = Assumed mean)
- 3. Multiply the deviation with the respective frequencies (d x f = fd)
 - 4. Add all the products = Σfd

$$\overline{x} = 2 \pm \left[\frac{0}{35} \right]$$

$$\overline{x} = 2 \pm 0$$

$$\overline{x} = 2$$

C. For Continuous Series

In continuous frequency distribution, the value of each individual frequency distribution is unknown. Therefore on the assumption that the frequency of the class intervals is concentrated at the centre that the mid point of each class interval has to be found out.

1. Direct Method

Steps: 1. Find out the mid value of each class. The mid value is obtained by adding the lower limit and upper limit of the class and dividing the total by two. For e.g., in a class interval say 10-20, the mid value is 15.

i.e.,
$$\left[\frac{10+20}{2} = \frac{30}{2} = 15 \right] = \text{(mid x)}$$

- 2. Multiply the mid value of each class by the frequency of the class. In other words mid x will be multiplied by f.
 - 3. Add all the products $(\sum f mid x)$
 - 4. $\Sigma f mid x$ is divided by Σf
 - 5. Apply the formula

$$\overline{\mathbf{x}} = \frac{\sum \mathbf{f} \operatorname{mid} \mathbf{x}}{\sum \mathbf{f}}$$

where

$$\overline{x}$$
 = Arithmetic mean
 $\Sigma f \operatorname{mid} x$ = the sum of products
 Σf = total of frequency

125

Illustration-5: From the following, find out the mean: Table 6.9

Marks (x)	10-20	20-30	30-40	40-50	50-60	60-70	70-80
No. of students (f)	10	18	20	26	30	28	18

Solution

Table 6.10

Marks (x)	Midpoint (mid x)	No. of Students (f)	f mid x
10-20	15.	10	150
20-30	25	18	450
30-40	35	20	700
	45	26	1170
40-50 50-60	55	30	1650
60-70	65	28	1820
70-80	75	18	1350
3		$\Sigma f = 150$	$\Sigma f \text{ mid } x = 7290$
Formula	\(\sum_{\text{inid}} \)		

$$\overline{\mathbf{x}} = \frac{\sum f \operatorname{mid} \mathbf{x}}{\sum f}$$

$$\overline{\mathbf{x}} = \left[\frac{7290}{150} \right]$$

$$= 48.6$$

$$\bar{\mathbf{x}} = 48.6$$

The average mark is 48.6

2. Short-cut Method

Steps: 1. Find the mid-value of each class (mid x).

2. Assume anyone of the mid value as an assumed mean

(A).

Solution :

Step 1. Form a table with columns Marks and Number of Students.

Step 2. Form m, the mid values of the class intervals column. m = Lower boundary + Upper boundary

For the first class interval 20–30, $m = \frac{20+30}{2} = 25$.

Step 3. Find the products of f and m pair wise and enter them in the next column.

Step 4. Find $N(=\sum f)$ and $\sum f m$.

Step 5. Divide Σf m by N to find \overline{X} .

Marks	No.of Students f	Mid Value m	fm	
20-30	5	25	125	A
30-40	8	35	280	Arithmetic Mea
40-50	12	45	540	$\overline{\mathbf{x}} = \sum \mathbf{f} \mathbf{n}$
50-60	15	55	825	$X - \frac{1}{N}$
60-70	6	65	390	2460
70-80	4	75	300	$=\frac{2100}{50}$
Total	N=50	_	$\sum fm$	= 49.20
			=2460	

Example 9: From the following data, compute arithmetic mean by short cut method.

Marks Obtained: 0-10 10-20 20-30 30-40 40-50 50-60 No. of Students: 5 10 25 30 20 10

(B.B.M. Bharathiar, N 01)

Solution:

Step 1. Form a table with columns Marks Obtained and No. of Students.

MEDIAN

Definition: Median is the value of the middle most item when all the items are in the order of magnitude.

M or Me denotes median.

Arithmetic mean is calculated on the basis of magnitudes or values of all the items. But median is concerned with the position or place of the items in a series. 'Which is the middle most item?' is the question.

Median divides the series into two equal parts. Half of the items will be equal to or less than the median; half of the items will be equal to or more than the median.

II. Median

Median is an average which divides a distribution into 2 equal halves. When the given values are arranged in an ascending order or descending order, that value which is in the centre is the median (middle value). In otherwords, there will be an equal number of items both above or below the median. Median is represented by the letter 'Md'. Like mean, median can also be calculated for

- a. ungrouped data
- b. discrete series
- c. continuous series_

grouped data

Median

Median is the middle value of a data when the values are arranged in the ascending or descending order.

Median is an average. It is a measure of central value.

Median divides a distribution into two equal halves. There will be equal number of items above and below the items.

Median is represented by the symbol md.

Median can be calculated for ungrouped data and grouped data.

The formula for the calculation of median for ungrouped data is

(Md = Value of
$$\left(\frac{N+1}{2}\right)^{th}$$
 item

md = median

N = Number of items

If there are *odd number* of items, then median is calculated as follows:

$$Md = \frac{11+1}{2} = \frac{12}{2} = 6$$

Median = Value of the 6th item, when the items are arranged in an ascending order.

When there are even number of items, the median falls between two items. The values of these two items are added and divided by 2 to get median.

If there are 12 items, the median is calculated as follows:

$$Md = \frac{12+1}{2} = \frac{13}{2} = 6.5$$

Median = Value of the 6.5th item. It is obtained by adding the values of 6th item and 7th item and dividing the sum by 2.

Median of a grouped data with class interval can be calculated by the following formula:

Median = L +
$$\left(\frac{N}{2} - cf\right) \times C$$

L = Lower limit of the median class.

N = Total frequency.

cf = Cumulative frequency prior to the median class.

C = Class interval of the median class.

f = Frequency of the median class.

Merits of Median

- 1. Simple to calculate.
- 2. It can be calculated without knowing the values of all the items.
 - 3. It is unaffected by extreme values.
 - 4. It can be calculated graphically.

Demerits

- 1. It is not based on all the items.
- 2. It is not used as a common average.
- 3. It is not used for further statistical calculation

A. Calculation of Median Individual Series or Ungrouped Data or Raw Data or Individual Observation

Steps: 1. Arrange the data in ascending or descending order.

2. Apply the formula

$$Md = \left(\frac{N+1}{2}\right)^{th} item$$

Illustration -13: The following are the marks scored by 11 students; find out the median marks.

					e 6.19				
15 18	10	14	20	9	21	30	6	10	13

Solution

First rearranging the given values in ascending order 6, 9, 10, 10, 13, 14, 15, 18, 20, 21, 30.

Apply the formula

$$Md = \left(\frac{N+1}{2}\right)^{th} value$$

where

$$N = \text{no.of items}$$

$$N = 11$$

$$Md = \frac{11+1}{2} = \frac{12}{2} = 6^{th} \text{ value}$$

$$6^{th} \text{ value is } = 14$$

$$6^{th}$$
 value is = 14 Md = 14

Under even numbers

Illustration -14: Find out median from the following:

Table 6.20

5	11	6	10	14	21

Solution

First rearranging the given values in ascending order.

~/2 :

5, 6, 10, 11, 14, 21

$$Md = \left(\frac{N+1}{2}\right)^{th} value$$

$$N = 6$$
∴ Md = $\frac{6+1}{2} = \frac{7}{2} = 3.5$ th value

In the data, 3rd value is 10

4th value is 11

$$3.5^{\text{th}} \text{ value} = \frac{10 + 11}{2} = \frac{21}{2} = 10.5$$

Median = 10.5

B. Calculation of Median - Discrete Series

Steps: 1. Arrange the data in ascending or descending order.

- 2. Find the cumulative frequencies.
- 3. Apply the formula

Median =
$$\left(\frac{N+1}{2}\right)^{th}$$
 value

140

Illustration -15: Find the median size of shoes.

Table 6.21 from the following data

Size of shoes in inches	Frequency
4	10
5	15
6	22
7	16
8	12
9	5

Solution

First find out less than cumulative frequency.

Table 6.22

Size of shoes in inches (x)	Frequency (f)	Less than cumulative frequency (cf)
4 5 6 → 7 8 9	10 15 —22 — 16 12 ·5	10 25 47 63 75
	N = 80	· · · · · · · · · · · · · · · · · · ·

Apply the formula

Median =
$$\left(\frac{N+1}{2}\right)^{th}$$
 value
= $\frac{80+1}{2} = \frac{81}{2}$
= 40.5^{th} value

Here 40.5th value is in between 25 and 47 of cumulative frequency. So we take higher cumulative frequency is 47. So we take the corresponding x value of cf 47. Here the corresponding x value of cf 47.

Median = 6So median size of shoes is 6 inches.

C. Calculation of Median - Continuous Series

Steps: 1. Find the cumulative frequencies.

- 2. Find out the median class by using $\frac{N}{2}$.
- 3. Apply the formula

Median =
$$L + \left[\frac{N/2 - c\overline{f}}{f} \right] \times C$$

where

L = lower limit of the median class

N = total number of items = Sf

cf = cumulative frequency prior to the median class

f = actual frequency of the median class

C = class interval of the median class

Illustration - 16: Calculate the median from the following table: data

Table 6.23

Marks	Frequency
0-10	22
10-20	38
20-30	46
30-40	34
40-50	20

Solution

Table 6.24: First find out less than cumulative

	frequ	Less than
Marks (x)	Frequency (f)	Less than cumulative frequency (cf)
0-10	22	60
10-20	38	106
20-30 ←	 46	140
30-40	34	1-10
40-50	20	
	N = 160	,

N = 160
Next, find out the median class by using
$$\frac{N}{2}$$

= $\frac{N}{2} = \frac{160}{2} = 80$

The value 80 is in between 60 and 106 of cumulative frequency. So we take higher cumulative frequency, namely 106.

Now we take the corresponding class of cumulative frequency 106.

Here the corresponding class of cf 106 is 20 - 30 So 20 - 30 is the median class.

20 is the lower limit of the median class.

46 is the actual frequency of the median class.

60 is cumulative frequency (cf) prior to the median class. Apply the formula

Median =
$$L + \left[\frac{N/2 - cf}{f} \right] \times C$$

$$= 20 + \frac{160/2 - 60}{46} \times 10$$

$$C = class interval$$

$$= 20 + \frac{80 - 60}{46} \times 10$$

$$= 20 + \left(\frac{20}{46}\right) \times 10$$

$$= 20 + (0.434 \times 10)$$

$$= 20 + 4.34$$

$$= 24.34$$
Graphic Location of M.

There are two methods of locating.

1. By an Ogive

An ogive is a cumulative frequency curve of frequency curve. Variables on the X-ax frequencies are on the Y-axis. The midd on vertical scale by the formula N/2.

Graphic Location of Median

There are two methods of locating median graphically.

An ogive is a cumulative frequency curve. It may be more than cumulative frequency curve or less than cumulative frequency curve. Variables on the X-axis and the cumulative frequencies are on the Y-axis. The middle item is then marked on vertical scale by the formula N/2. A line parallel to the base is drawn, cutting the ogive at any point draw a line perpendicular to the base and the median is read off.

Illustration - 17

Table 6.25

Marks	No.of students	Marks	No.of students
0-10	5 5	50-60	25 72
10-20	6-11	60-70	10 82
20-30	8 19	70-80	8
30-40	12 31	80-90	6
40-50	16 47	90-100	4

ale 35: Calculate the median from the following

6	25-40 20	40-55 44		85-100 1 MK, N 01)
MERCY			7	

golution Marks	Frequency	Cumulative Frequency cf	
	1		
	6	6	
0. 25	20	26	
10- 25 25- 40 25- 55	44	70 ←	
in De	26	96	
16 11	3	99	
A. DU	1	100	
70-100 85-100 Total	N=100	***	

$$\frac{N}{2} = \frac{100}{2} = 50$$
Median class interval: $40-55$
 $L = 40$; $f = 44$; $cf = 26$; $i = 55-40 = 15$

As $M = L + \left[\frac{i(\frac{N}{2} - cf)}{f}\right]$,
$$M = 40 + \left[\frac{15(50 - 26)}{44}\right]$$

$$= 40 + \left[\frac{15 \times 24}{44}\right]$$

$$= 40 + 8.18$$

$$= 48.18 \approx 48$$

Note: When the class intervals are not continuous, and the difference between the lower limit of an interval and the upper limit of the preceding interval when they are in ascending order. Find half of the difference and add to each upper limit and subtract it from each lower limit. Resulting class intervals are called 'True Class Intervals'. They are continuous.

Atode is the most common item of a series. It is defined as the value of the variable which occurs most frequently in a distribution. It is repeated the highest number of times in the series. Like median, it is also a positional average which can be located by inspection.

When a distribution has one concentration of frequency, it is often called "unimodal" on the otherhand, when it has 2 concentrations it is termed as "bimodal" similarly if 3 concentrations it is termed as "trimodal". etc.

Merits of Mode

- 1. It is easy to understand.
- It is simple to calculate.
- It is unaffected by extreme values.
- It is a positional average and can be located easily by inspection.
 - 5. It can be determined by the graphic method.

Demerits

- It is an average, which is ill-defined and indeterminate.
 - 2. It is not further used in algebraic calculations.
- In the case of bimodal class, the calculation is difficult as it involves grouping and analysis tables.
 - It is not based on all observations.

Mode

Mode is the value of the variable which occurs most frequently in a distribution.

The value which occurs many times in the table is the mode.

It is represented by the letter Mo.

Mode is an average. It is a positional average. It is a measure of central value.

When a data has one concentration of frequency, it is called unimodal. When it has two concentrations, it is called bimodal. When it has 3 concentrations of frequency, it is called trimodal.

Mode can be calculated for ungrouped data and

grouped data.

To find out mode of an ungrouped data, the values are arranged in an ascending order. The value which occurs maximum number of times is the mode.

18, 21, 23, 23, *25,25,25*, 27, 29, 29.

In the above data, 25 occurs maximum number of times. So 25 is the mode.

The mode of a discrete distribution is the value of the variable which shows maximum frequency.

No.of count trees	10	11	12	13	14	15	16
No. of coconuts (Frequency)	8	4	12	24	26	7	11

In the above table, 14 is the mode because the values are maximum here.

Merits of Mode

- Mode can be easily found out.
- 2. No calculation is needed.
- It is not affected by extreme values.
- It can be calculated graphically.

Demerits of Mode

- 1. It is not clearly defined.
- It is not based on all observations.
- It is not reliable.
- 4. It is not used for further statistical calculation.

A. Calculation of Mode: Individual Observation or **Ungrouped Data or Raw Data**

Step 1: The data have to be arranged in the form of an array so that the value which has the highest frequency can be known

Rearranging the data into a discrete series. Find out the highest frequency.

Illustration - 18: Determine mode from the following data:

Table 6.27

50	62	48	50	63	65	50	48	43	62	50	50

Solution

Table 6.28: First the data is arranged in the form of an array.

43	48	48	50	50	50	50	50	62	62	63	65
73	70	40	50	50							

In this data, 50 is repeated 5 times So Mode is 50

or

Rearranging the data into discrete series. It is comparatively easy.

Table 6.29

х	43	48	50	62	63	65	
f	1	2	5	2	2	2	$\Sigma f = 14$

Here the value 50 is repeated 5 times

Mode = 50

B. Calculation of Mode: Discrete Series

Step - 1: It can be find out even by inspection i.e., which variable (x) has the highest frequency is the Mode.

Illustration - 19: Determine mode from the following data:

Table 6.30

х	20	25	30	/35	40	45	50
f	1	2	1	5	1	2	1

Solution

Here the value 35 is repeated 5 times

So mode is 35

Sometimes we cannot depend on the method of inspection to find out the mode. In such situations, it is suggested to prepare a grouping table and an analysis table to find out the mode. First prepare grouping table and then 🚅 an analysis table.

Illustration - 20: From the following data of the height of 100 plants in a garden determine the modal height. Table 6.31

				uore						
Height (x)	58	60	61	62	63	64	65	66	68	70
Plants (No.)	4	6	5	10	20	22	24	6	2	1
(I)										

Solution

By inspection we can clearly say that the modal height is 65cm, because the value 65 is repeated 24 times. But in this problem, the difference between the maximum frequency and the next frequency is very small is 24 - 22 = 2. So prepare grouping table and analysis table.

(In the case of bimodal series or trimodal series, we must prepare first grouping table and analysis table).

Steps for Preparing the Grouping and Analysis Table

- 1. Prepare a grouping table with 6 columns.
- 2. Write the size of item in the margin.
- 3. In column 1, write the frequencies against the respective items.

4. In column 2, the frequencies are grouped in twos (1 and 2; 3 and 4; 5 and 6 and so on).

5. In column 3, the frequencies are grouped in twos; leaving the first frequency (2 and 3; 4 and 5; 6 and 7 and so on).

6. In the column 4, the frequencies are grouped in

threes (1, 2 and 3; 4,5 and 6; 7,8 and 9 and so on).

7. In the column 5, the frequencies are grouped in threes leaving the first frequency (2,3 and 4; 5,6 and 7; 8,9 and 10 and so on).

8. In the column 6, the frequencies are grouped in threes leaving the first two frequencies (3,4 and 5; 6,7 and 8;9,10 and 11 and so on).

In all the processes mark down, the maximum frequencies by a circle.

9. Then an analysis table is prepared to show the exact size, which has the highest frequency.

Table 6.32: Grouping Table.

Height in		Frequencies							
cm	Column 1	Column2	Column3	Column4	Column5	Column6			
58	4	(4+6)	1.5	15	_	-			
60	6	10	11	(4+6+5)	21				
61	5	(5+10)			(6+5	(5+10			
62	10	15	30	. 17.19	(+10)	35			
63	20	(20+22)		(10+20		20/			
64	22	42	(22+24) 46	52+22					
65	24	(24+6)	46		(20+24)	24			
66	6	30	(6+2)	32	66	12+24			
68	2	(2+1)	8	32	(6+2+1)	52			
70	1	3			6 9	4			

Table 6.33: Analysis Table.

				Hei	ght i	n cm	١.			
Col.	58	60	61	62	63	64	65	66	68	70
No.							1			
1					1	1				
2						1	1			
3				1	1	1				
4					1	1	1			
5						1	1	1		
6		-	+	$\frac{1}{1}$	3	5	4	1		
Total								ovim	um t	numbe

Since the value 64 has occurred the maximum number of times. i.e., 5 times. :. The modal height is 64 cm. But by inspection in the data, one is likely to say that the modal height is 65, since it occurs the maximum number of times i.e., 24 which is incorrect as revealed by grouping and 🗢 analysis table.

C. Calculation of Mode: Continuous Series

Step: 1. The highest frequency can be find out by

In the case of bimodal series or trimodal series we inspection. prepare. Grouping and analysis table and then find out highest frequency.

2. Apply the formula

Mode = L +
$$\left[\frac{\Delta_1}{\Delta_1 + \Delta_2}\right] \times C$$

where

lower limit of the modal class

the difference between the frequency of the modal class and the preceding modal class $(f_1 - f_0)$

(iii)the sizes or lengths of the class intervals are a fact The data are to be rearranged, if necessary were the The data are to be realized, the class intervals may be fulfilment of the third condition, the class intervals may be revised such that their sizes become equal. The frequences revised such that their sizes changing the contents of the

Or else, mode can be estimated from the following empirical relation between mean, median and mode

Mode = 3 Median - 2 Mean

Such a relation is found to exist in moderately skewed series.

- 2. Identify the modal class interval. It is the class interval which has the greatest frequency density. In many cases, it is the one which has the greatest frequency if necessary form the grouping table and the analysis table as explained for discrete series to identify the model class interval. Instead of X consider the class intervals while forming the two tables.
- 3. Case I. If the class interval with the greatest frequency is identified as the modal class interval, apply the formula

$$Z = L + \left[\frac{i(f_1 - f_0)}{2f_1 - f_0 - f_2} \right]$$

Z = Mode

L = Lower boundary of the modal class interval

 f_1 = Frequency of the modal class

 $f_0 = Frequency of the class preceding the modal class$

f₂ = Frequency of the class succeeding the modal class

i = Size or length of the modal class interval

Its upper boundary - its lower boundary.

The same is found by the following form of the formula which is more convenient:

$$Z = L + \left[\frac{iD_1}{(D_1 + D_2)} \right]$$

Z, L and i are defined as above.

 $D_1 = f_1 - f_0 = Frequency of the modal class$ Frequency of the class preceding the modal class.

fi - f2 "Frequency of the modal class -Frequency of the class succeeding

garray R. Spiegel uses L₁, Δ_1 , Δ_2 and C instead of po and i. GT

Case II. If the class interval other than the one with gestest frequency is identified as the modal class by the grouping table and the analysis table, apply y formula

 $I = L + \left[\frac{i f_2}{(f_1 + f_2)} \right]$

Lever boundary of the modal class interval prequirey of the class preceding the modal class proquency of the class succeeding the modal class Size or length of the modal class interval lu upper boundary - its lower boundary.

Note: The value of mode lies within the modal class garral in either case.

Example 45: Calculate the mode.

hily Wage in Rs. 50-60 60 - 7070-80 80-90 90-100 hof Labourers 62 75 100 40

Solution : Greatest frequency = 100 and the modal insinterval is 80-90.

(80-90 may be ascertained to have greatest frequency insity by grouping table and analysis table)

1.80, the lower boundary of the modal class interval,

100, the frequency of the modal class,

1. 75, the frequency of the class preceding the modal

65, the frequency of the class succeeding the modal class and

- 80 = 10, the size of the modal class interval.

$$D_2 = f_1 - f_2 = 100 - 65 = 35$$

he

e

S

clas

13

Z = L +
$$\left[\frac{iD_1}{(D_1 + D_2)}\right]$$

= 80 + $\left[\frac{10 \times 26}{(28 \div 36)}\right]$
= 80 + $\left[\frac{250}{60}\right]$
= 80 + 4.17
= Rs. 84.17

Example 46: Find out mode for the following data using grouping and analysis table.

Class Interval:	0-5	5-10	10-15	15-20
Frequency : Class Interval:	9 20-25	12 25-30	15 30-35	16
Frequency:	17	15	10 Bhasathi	35-46 13

Solution: A grouping table and an analysis table are formed as explained earlier.

Grouping Table

	G	roup	ing '	Table			
Class Interval	Frequency						
inver var	(1)	(2)	(3)	(4)	(5)	(6)	
0- 5	9					THE REAL PROPERTY AND ADDRESS OF THE PARTY AND	OR CHARLES
		21					
5-10	12			36			
			27				
10-15	15				43		
		31					
15-20	16					48	
	depolation.		33				
20-25	17		00	48			
11.0	3 - Long	9.0		40			
25-30	16	32					
20-00	15				42		
30-35	10		25				
30-35	10	00				38	
25 40	13	23					
35-40	10						-

	221	
Anal	ysis	Table
101		Table

ss	(1)	(2).	(3)	(4)		(6)	Total	_
5 10 15 20 25 30 35	1	1 1	1	1 1 1	1 1 1	1 1 1	1 2 4 5 2	

idal class interval: 20-25

$$_{1}$$
 $_{20}$; $i = 25-20 = 5$; $D_{_{1}} = 17-16 = 1$; $D_{_{2}} = 17-15=2$

Mode,
$$Z = L + \left[\frac{iD_1}{(D_1 + D_2)}\right]$$

$$= 20 + \left[\frac{5 \times 1}{(1+2)} \right]$$

$$= 20 + \left[\frac{5}{3}\right]$$

$$= 20 + 1.67$$

= 21.67

Example 47: Calculate the mode.

8-10 10-12 12-14 14-16 6-8 interval : 0-2 2-4 20 25 30 requency: 45 50 70 65

Solution: For finding the interval which has the Reatest frequency density in this example, grouping table analysis table are formed.

222 **Grouping Table**

Interval	Frequence	y					
,	(1)	(2)	(3) ·	(4)	(5)	(6)
0- 2	45	0.5					(0)
2- 4	50	95		(1	60)		
4- 6	65		(11	5)		(185)	
6- 8	70	(135)					
8-10	30		100		25		(L65)
10-12	25	55				75	
12-14	20		45			. 0	
14-16	18	38					63
		Ana	alysis	Table	e		
Interval	(1)	(2)	(3)	(4)	(5)	(6)	Total
0- 2				1	/	(0)	
2-4			1	1	1	no.	1
4- 6		1	1	1	1	4	3
6-8	1	1	-	1	1	1	5
8-10		_			1	1	4
10-12						1	1
							. —
12-14 14-16							

The interval 4-6 does not have greatest frequency. But it has greatest frequency density. Consider

$$Z = L + \left[\frac{i f_2}{(f_1 + f_2)} \right]$$

L = 4, the lower boundary of the modal class,

i = 6-4 = 2, the size of the modal class interval,

f₁ = 50, the frequency of the class preceding the modal class f₂ = 70, the frequency of the class succeeding the modal

GEOMETRIC MEAN

penaltic of the N values of N values is the No.

NX1.X2.X3......XN

M. is the abbreviation.

pavoid the difficulty in multiplying all the values and the appropriate root of the product, log. is used. formulae:

 $M = \text{Antilog}\left(\frac{\sum \log X}{N}\right)$ for individual observations

Antilog $\left(\frac{\sum f \log X}{N}\right)$ for discrete series

Antilog $\left(\frac{\sum f \log m}{N}\right)$ for continuous series.

Similarly, weighted geometric mean

= Antilog $\left(\frac{\sum W \log X}{\sum W}\right)$

Calculation of G.M. in individual observations has the lowing five steps.

Step 1. Form a table with the given values of X in afirst column.

Step 2. Use a calculator or refer to a logarithm table make note of the logarithm of each X in the next column ader the title log X.

Step 3. Find $\sum \log X$

Step 4. Identify N and divide \(\Sigma\log X\) by N.

Step 5. Using a calculator or an antilogarithm table,

Antilog $\left(\frac{\sum \log X}{N}\right)$ which is the G.M.

Example 70: Find the geometric mean of 3 6 24 48 (I.C.W.A. Foundation, J 99 and J 01)

	Solution:	G.M.	14	Antilog 2 log x
X	logX	64 477		N N
3	0.4771		,gar	Antilog Files
6	0.7782		.75	Antilog
24	1.3802			Antilog (1.5392)
48	1.6812		100	12.90

Note: It is seen that

G.M. =
$$\sqrt{3 \times 6 \times 24 \times 48}$$

= $\sqrt{3 \times 6 \times 2 \times 12 \times 4 \times 12}$
= $\sqrt{12 \times 12 \times 12 \times 12}$
= 12.

For calculating G.M. from a discrete series, the following six steps are used.

Step1. Form a table with the given values of X and in the first two columns.

Step 2. Use a calculator or refer to a logarithms table and make note of the logarithm of each X in the next column under the title log X.

Step 3. Multiply f and log X in pairs and enter the products in the next column under the title f log X.

Step 4. Find $N(=-\sum f)$ and $\sum f \log X$.

Step 5. Divide \(\Sigma \) log X by N.

Step 6. Using a calculator or an antilogarithms table.

find Antilog
$$\left(\frac{\sum f \log X}{N}\right)$$
 which is the G.M.

Example 71: Calculate Geometric mean for the date given below:

(B.Com. Bharathidasan, A (E)

e Politica Lawrence		
on: f	log X	flogX
4	1.0000	4.0000
6	1.1761	7.0566
10	1.3979	13.9790
7	1.6021	11.2147
3	1.6990	5.0970
N=30		$\Sigma f \log X =$
N=90		41.3473

G.M. = Antilog
$$\left(\frac{\sum f \log X}{N}\right)$$

= Antilog $\left(\frac{41.3473}{30}\right)$
= Antilog (1.3782)
= 23.89

When X is replaced by m in the formula for discrete series, beformula for continuous series is obtained.

The steps in the calculation of G.M. are similar in discrete ries and continuous series.

Whatever be the form in which a continuous series is even, identify the mid values (m) of the class intervals and le class frequencies (f) first. Then proceed as in a discrete

Example 72: Compute the Geometric mean of the 40-50

30-40 blowing series: 20-30 10-20 8 0 - 10Marks 25 15 No.of students :

(B.Com. Madras, O 01; B.Com.(C.A.) Bharathiar, N 01)

Solution:

Marks	No.of Stud	ents Mid Val	UNE	The same of the sa
	f	993	log m	florn
0-10	5	5	0.6990	3.495
10-20	7	1.5	1.1761	8.202
20-30	15	25	1.3979	20.368
30-40	25	35	1.5441	28.6025
40-50	8	4.5	1.6532	13.225
Total	N=60	2020	*****	If log ma
				84.5243

G.M. = Antilog
$$\left(\frac{\sum f \log m}{N}\right)$$

= Antilog $\left(\frac{84.5243}{60}\right)$
= Antilog (1.4087)
= 25.63.

When f are replaced by W in the formula for G.M. of a discrete series, the formula for weighted G.M. is obtained. Hence, the steps for calculation of weighted G.M. are similar to those of a discrete series.

Example 73: Calculate weighted G.M.

Commodity	A	В	$\tilde{\mathbf{c}}$	D
Weight	1	6	3	2
Price (Rs.)	5	17	30	42

Solution:

Commodity	Weight W	Price (Rs.) X	log X	W log X
Α	1	5	0.6990	0.6990
В	6	17	1.2304	7.3824
\mathbf{c}	3	30	1.4771	4.4313
D	2	42	1.6232	3.2464
Total	ΣW =12			$\Sigma W \log x$ = 15.7591

257 HARMONIC MEAN

Definition: Harmonic Mean is the reciprocal of the mean of the reciprocals of the values.

If $X_1, X_2, X_3, \ldots, X_N$ are the values, their reciprocals are $\frac{1}{X_1}, \frac{1}{X_2}, \frac{1}{X_3}, \ldots, \frac{1}{X_N}$. The total of the reciprocals is $\Sigma\left(\frac{1}{X}\right)$

The mean of the reciprocals is $\frac{\sum (\frac{1}{X})}{N}$

the reciprocal of the mean of the reciprocals is $\frac{N}{\Sigma(\frac{1}{X})}$.

i.e. H.M. =
$$\frac{N}{\frac{1}{X_1} + \frac{1}{X_2} + \dots + \frac{1}{X_N}}$$

H.M. is the abbreviation.

Formulae:

H.M = $\frac{N}{\Sigma(\frac{1}{X})}$ for individual observations.

 $= \frac{N}{\Sigma(\frac{f}{X})}$ for a discrete series.

 $= \frac{N}{\Sigma(\frac{f}{m})}$ for a continuous series.

Similarly, weighted harmonic mean = $\frac{\sum W}{\sum \left(\frac{W}{X}\right)}$

Calculation of H.M. in individual observations has the following four steps:

Step 1. Form a table with the values of X in the fine column.

Step 2. Use a calculator or a table and find the value of $\frac{1}{X}$ corresponding to each X. Write those values in the resolution under the title $\frac{1}{X}$.

Step 3. Identify N and find $\Sigma(\frac{1}{X})$.

Step 4. Divide N by $\Sigma(\frac{1}{X})$ to get the H.M.

Note: In other calculations, certain values are divided by N. In H.M., N is divided by $\Sigma\left(\frac{1}{X}\right)$.

Example 74: Find the Harmonic Mean for the following individual data:

6, 15, 35, 40, 900, 520, 300, 400, 1800, 2000.

(B.Com. Madras, A 99)

Solution:

Value	1.	
X	$\overline{\mathbf{X}}$	
6	0.1667	
15	0.0667	
35	0.0286	
40	0.0250	$\frac{N}{\sqrt{1}}$
900	0.0011	$H.M. = \sum \left(\frac{1}{X}\right)$
520	0.0019	\21
300	0.0033	$=\frac{10}{1000}$
400	0.0025	$-\frac{1}{0.29}$
1800	0.0006	= 33.6
2000	0.0005	

following are the steps to calculate the H.M. of a 1: Form a table with the values of X and f in the

Divide f by X and enter the quotients in the next mo columns.

under the title $\left(\frac{f}{X}\right)$

sep 3: Find N (= Σf) and $\Sigma \left(\frac{f}{X}\right)$

step 4: Divide N by $\Sigma(\frac{f}{X})$ to get the H.M.

cample 75: Calculate the harmonic mean from the

ing data. 20 18 16 14 12 10 6 1 1: 10 18 20 f:

(B.Com. MK, N 2K; B.B.A. Bharathidasan, N 98)

Solution:

Solut	ion:		
Y	f	f/x	a factor of the last
A	5	0.5000	$H.M. = \frac{N}{-f}$
10	18	1.5000	$\Sigma\left(\frac{1}{X}\right)$
12.	20	1.4286	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
14	10	0.6250	$=\frac{60}{14000}$
16 18	6	0.3333	$=\frac{4.4369}{4.4369}$
20	1	0.0500	= 13.52
Total	N=60.	4.4369	
_			

When X is replaced by m in the formula for H.M. of a discrete the formula for H.M. of a continuous series is obtained. that the mid values of the class intervals (m) and the class quencies (f). Then the steps for the calculation of H.M. are war to those of a discrete series.

Example 76: Calculate the Harmonic Mean for the lowing data.

Value 0-10 10-20 20-30 30-40 40-50

Frequency : 4 20 8 12

(B.Com.(C.A) Bharathiar, A O1)

44	ol		4 4	-	
	0	100	9.1		

Value	Frequency(f)	Mid Value(m)	
0-10	N	5	1/m
10-20	12	15	1.6000
20-30	20	25	0.8000
30-40	6	35	0.8000
40-50	4	45	0.1714
Total	N=50	222	0.0889 3.4603
A STATE OF THE PARTY OF THE PAR	N		0.4603

H.M. =
$$\frac{N}{\Sigma(\frac{f}{m})} = \frac{50}{3.4603} = 14.45$$

The steps in the calculation of weighted Harmonic Mean are similar to those of Harmonic Mean of a discrete sense. W replaces f.

Example 77: Calculate weighted Harmonic Mean

Val	ue :	1	2	5	10	20
We	ight:	2	5	10	5	2

Solution:

Value X	Weight W	WX	Weighted
1	2	2.0	Harmonic Mean
2	5	2.5	$\sum W$
5	10	2.0	$\Sigma(\frac{W}{Y})$
10	5	0.5	(X)
20	2	0.1	$=\frac{24}{7.1}$
Total	W=	$\Sigma\left(\frac{W}{X}\right) =$	= 3.38
	24	7.1	

Special Use of Harmonic Mean

Average speed is the distance travelled per hour. 'total distance + total time in hours' gives the average speed

Without those calculations, average speed can be found

MEASURES OF DISPERSION

paseries, all the items are not equal. There is difference among the values. The degree of masseries, among the values. The degree of variation is arise by various measures of dispersion. various measures of dispersion.

werages are central values. They enable comparison of Averages sets of data. They are not sufficient to depict the sets. For example, consider the consideration of of the sets. For example, consider the following of two students. of two students.

Student I	Student II		
68	85		
75	90		
65	80		
67	25		
70	65		

have got a total of 345 and an average of 69 each. The dis that the second student has failed in one paper. When waverages alone are considered, the two students are equal.

Less variation is a desirable characteristic. First student Bless variation. That is, he is almost equally good in all the bjects. To quote Simpson and Kafka, "An average does not the full story. It is hardly fully representative of a mass, mless we know the manner in which the individual items scatgaround it. A further description of the series is necessary if ware to guage how representative the average is".

Consider the following example.

	ident C	Grou	t D Stud	ent E	
Mark	Deviation from Mean	Mark	Deviation from Mean	le le constitue de la constitu	from Mean
X	$X - \overline{X}$	X	$X-\overline{X}$	$\frac{X}{20}$	-40
60 60 60 60 60	0 0 0 0	50 55 60 65 70	-10 - 5 0 5 10	$ \begin{array}{r} 20 \\ 40 \\ 60 \\ 80 \\ 100 \\ \hline 300 \end{array} $	-20 0 20 40
Mean(X):6	0	300 60		60	

RANGE

Range is the difference between the greatest pennition: Range = I_S peting and the smallest of the values.

Range = L-S

Range = L-S

Largest Value

S. Smallest Value 2 M. 5. Since the series of the ser In individual identified. In continuous series, the following two large followed. and followed.

thod 1:

Upper boundary of the highest class

s. Lower boundary of the lowest class

L. Mid value of the highest class

S. Mid value of the lowest class

efficient of Range = $\frac{L-S}{L+S}$

Example 1: Find the value of range and its coefficient

the following data :

5 10

12 11

(B.Com. Bharathiar, AO2)

Solution:

L

=

S = 5

Range

= L - S

= 12 - 5

Coefficient of Range

$$= \frac{L-S}{L+S}$$

$$=\frac{12-5}{12+5}$$

$$= \frac{7}{17}$$

= 0.4118

Example 2: Calculate range and its coefficient from efollowing distribution:

60-62

63-65

66-68

69 - 71

72 - 74

Number:

5

18

42

27

8

(B.Com. Bharathiar, AO1)

Salution :

Method 1 : After rewriting the class intervals Method 1 : Arter continuously, the lower boundary of the lowest class, 8 = 59.5and the upper boundary of the highest class, L = 74.5

Range = L-8
= 74.5 - 59.5
= 15
Coefficient of Range =
$$\frac{L-8}{L+8}$$

= $\frac{745-595}{745+595}$
= $\frac{15}{134}$

Method 2:

Mid value of the lowest class, S = 61Mid value of the highest class, L = 73

Range = L-S
= 73-61
= 12
Coefficient of Range =
$$\frac{L-S}{L+S}$$

= $\frac{73-61}{73+61}$
= $\frac{12}{134}$
= 0.0896.

Uses of Range

Range is not a popular measure of dispersion. It is used in the following few situations.

- . Range is used in finding the control limits of Mean chart and Range chart in S.Q.C.
- While quoting the prices of shares, bonds, gold, etc. on daily basis or yearly basis, the minimum and the maximum prices are mentioned.
- 2. The minimum and the maximum temperature likely to prevail on each day are forecasted.

1. It is a very rarely used measure. Its scope is limited to union andicated earlier.

OUARTILE DEVIATION (Q.D.)

Definition: Quartile Deviation is half of the difference wen the first and the third quartiles. Hence it is called ni Inter Quartile Range.

In symbols, $Q.D. = \frac{Q_3 - Q_1}{2}$ Q.D. is the abbreviation. mag the quartiles Q_1 , Q_2 and Q_3 , the range is $Q_3 - Q_1$. Hence, We called inter quartile range and $\frac{Q_3-Q_1}{2}$, semi inter atile range.

Coefficient of Quartile Deviation = $\frac{Q_3 - Q_1}{Q_2 + Q_1}$

As mentioned in the previous chapter, 25% of the values below or equal to Q₁; 25% above or equal to Q₃. Q₃ Q₁ is distance between Q₁ and Q₃. Central 50% of the items lie

 Q_1 and Q_3 . It is customery to consider $\frac{Q_3-Q_1}{2}$ as an white measure of dispersion.

Definitions and calculations of Q_1 and Q_3 for all $t_{yp_{q_8}}$ data were considered in the previous chapter.

Example 3: What do you mean by Quartile Deviation Find the Quartile Deviation for the following:Find the Quartile Deviation for the following:
(B.Com. Madras, 874)

Solution: The given values in ascending order: 384, 391, 407, 522, 591, 672, 733, 777, 1490, 2488.

Position of
$$Q_1$$
 is $\frac{N+1}{4} = \frac{10+1}{4} = 2.75$.

$$Q_1 = 2^{nd} \text{ value} + 0.75 (3^{rd} \text{ value} - 2^{nd} \text{ value})$$

$$= 391 + 0.75 (407-391)$$

$$= 391 + 0.75 \times 16$$

$$= 391 + 12$$

$$= 403$$

Position of
$$Q_3$$
 is $3\left(\frac{N+1}{4}\right) = 3 \times 2.75 = 8.25$

$$\therefore Q_3 = 8^{th} \text{ value} + 0.25 (9^{th} \text{ value} - 8^{th} \text{ value})$$

$$= 777 + 0.25 (1490 - 777)$$

$$= 777 + 0.25 \times 713$$

$$= 777 + 178.25$$

$$= 955.25$$

$$\therefore Q.D. = \frac{Q_3 - Q_1}{2}$$

$$= \frac{955.25 - 403.00}{2}$$

$$= \frac{552.25}{2}$$

$$= 276.13$$

Example 4: Weekly wages of a labourer are given below. Calculate Q.D. and coefficient of Q.D.

 Weekly Wage (Rs.)
 100
 200
 400
 500
 600
 Total

 No. of Weeks
 5
 8
 21
 12
 6
 52

pution: Cum. Position of Q_1 is $\frac{N+1}{4} = \frac{52+1}{4}$	
No. of Freq. Position of Q_1 is $\frac{N+1}{4} = \frac{52+1}{4}$	
Od a Clark No.	
$Q_1 = 13$ th value +	
8 0.25 (14th value 10th	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
= 200 + 0.25 (400-200)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
- 250	
N=52 $(N+1)$	
$c_{0,is} 3 \left(\frac{N+1}{4} \right) = 3 \times 13.25 = 39.75$	
$N=52$ $Q_{3} \text{ is } 3\left(\frac{N+1}{4}\right) = 3 \times 13.25 = 39.75$ $39^{\text{th}} \text{ value} + 0.75 (40^{\text{th}} \text{ value} - 39^{\text{th}} \text{ value})$	
$\begin{array}{c} 39 \text{th Value} \\ 500 + 0.75 (500 - 500) \\ 0.75 \times 0 \end{array}$	
500 + 0.75 × 0	
$= \frac{500 + 0.75}{500 + 0.75} \times 0$	
500 + 0	
= 500	
$Q_{3} = \frac{Q_{3} - Q_{1}}{2} = \frac{500 - 250}{2} = \frac{250}{2} = 125$	
D.= 2	
perficient of Q.D.= $\frac{Q_3 - Q_1}{Q_3 + Q_1} = \frac{500 - 250}{500 + 250} = \frac{250}{750} = 0.3333$	
$Q_3 + Q_1 = 500 + 250 = 750$	L11 -
Example 5: For the data given here, give the quart	nie
ation.	
351-500 501-650 651-800 801-950 951-110	M

(B.Com. Bharathidasan, A 01)

Solution:

solution	:		
Х.	f	True class intervals	Cumulative Frequency
351- 500	48	350.5 - 500.5	48
501- 650	189	500.5 - 650.5	237 ←
651- 800	88	650.5 - 800.5	325 ←
⁸⁰ 1- 950	47	800.5 - 950.5	372
⁹⁵¹ -1100	28	950.5 -1100.5	400
Total	N = 400		h, 10. 14

$$\begin{array}{lll} \frac{N}{4} &=& \frac{400}{4} = 100; & Q_1 \text{ class is } 500.5 - 650.5 \\ L_1 &=& 500.5; f_1 = 189; 1_1 = 650.5 - 500.5 = 150; ef_{12} = 48 \\ Q_1 &=& L_1 + \left[\frac{i_1(N_4 - ef_1)}{f_1} \right] \\ &=& 500.5 + \left[\frac{150(100 - 48)}{189} \right] \\ &=& 500.5 + \left[\frac{150 \times 52}{189} \right] \\ &=& 500.5 + 41.27 \\ &=& 541.77 \\ \hline \\ \frac{3N}{4} &=& 3 \times 100 = 300; Q_3 \text{ class is } 650.5 - 800.5 \\ L_3 &=& 650.5; f_3 = 88; i_3 = 800.5 - 650.5 = 150; ef_3 = 237 \\ L_4 &=& \frac{i_3(3N_4 - ef_3)}{f_3} \right] \\ &=& 650.5 + \left[\frac{150(300 - 237)}{88} \right] \\ &=& 650.5 + \left[\frac{150 \times 63}{88} \right] \\ &=& 650.5 + 107.39 \\ &=& 757.89 \\ L_4 &=& \frac{21612}{2} \\ &=& 108.06 \end{array}$$

Merits

- It is simple to understand and easy to calculate.
- 2. It is not affected by extreme items.
- 3. It can be calculated for data with open end classes also

DEVIATION OR AVERAGE DEVIATION peinition: Mean deviation is the arithmetic mean bsolute deviations of the values about their metic mean or median or mode. D. is the abbreviation for Mean Deviation. There are kinds of mean deviations, viz., mean deviation or mean deviation about mean mean deviation about median mean deviation about mode. Mean deviation about median is the least. It could sily verified in individual observations and discrete series the actual values are considered. Toefficient of Mean Deviation (about Mean) = Mean Deviation about Mean Mean Coefficient of Mean Deviation about Median = Mean Deviation about Median Median Coefficient of Mean Deviation about Mode = Mean Deviation about Mode Mode

widual Observations

Mean Deviation (about Mean) = $\frac{\sum |X - \overline{X}|}{N}$

The mean, $\overline{X} = \frac{\sum X}{N}$ is calculated first. From each X,

10	7:	Calc	culat	e me	ean	devi	ation	about	median
sxample items 4	10	9	15	12	7 (B.C	9 om.I	7 3hara	athidas	median san,A 01)
1									

solution: Items are considered in ascending order. Position of Median (M) is $\frac{N+1}{2} = \frac{9+1}{2} = 5$ Median (Item at 5^{th} position) = 9

M.D. about Median
$$= \frac{\sum |X - M|}{N}$$
$$= \frac{21}{9}$$
$$= 2.33$$

 $\sum |X - M| = 21$ Note: If the Coefficient of M.D. about Median is required,

Note: If the Coordinates and the Modelian is
$$\frac{M.D. about Median}{Median}$$
 is $\frac{2.33}{9} = 0.2589$

Example 8: Daily earnings in Rs.(X) of 10 coolies are Calculate all the three mean deviations and the corre-

anding relative measures. 57 56 57 78 23 46 20

Solution	:	X - M	X-Z
X	$\left X - \overline{X} \right $ $\overline{X} = 45$	M=48.5	Z=57
(Rs.)		28.5	37 34
20	25 22	25.5	27
23	15	18.5 16.5	25
30	13	$\begin{array}{c} 16.5 \\ 2.5 \end{array}$	11 6
32 46	B 11.	2.5	1
51	6	7.5	0
56	11	8.5	0
57	$\begin{array}{c} 12 \\ 12 \end{array}$	$\begin{array}{c} 8.5 \\ 29.5 \end{array}$	21
57 78	33	A Washington	$\Sigma X - Z = 162$
ΣX=	$\Sigma X - \overline{X} =$	$\sum X - M = 148.0$	162

$$\overline{X} = \frac{\sum X}{N} = \frac{450}{10} = \text{Rs.}45$$

$$M.D. \text{ about Mean} = \frac{\sum \left| X - \overline{X} \right|}{N} = \frac{150}{10} = \text{Rs.}15$$

$$\text{Coefficient of M.D about Mean} = \frac{M.D.}{\text{Mean}} = \frac{15}{45} = 0.3333$$

$$\text{Position of Median, M is } \frac{N+1}{2} = \frac{10+1}{2} = 5.5$$

$$\text{Median} = \frac{5^{\text{th}} \text{ item} + 6^{\text{th}} \text{ item}}{2} = \frac{46+51}{2} = \text{Rs.}48.50$$

$$\text{M.D. about Median} = \frac{\sum \left| X - M \right|}{N} = \frac{148}{10} = \text{Rs.}14.80$$

$$\text{Coefficient of M.D. about Median} = \frac{M.D. \text{ about Median}}{Median}$$

$$= \frac{14.80}{48.50}$$

$$= 0.3052$$

$$\text{Mode, Z = Rs.}57$$

$$\text{Mean deviation about Mode} = \frac{\sum \left| X - Z \right|}{N}$$

$$= \frac{162}{10}$$

$$= \text{Rs. } 16.20$$

$$\text{Coefficient of M.D. about Mode}$$

$$= \frac{M.D. \text{ about Mode}}{Mode}$$

$$= \frac{16.20}{57}$$

$$= 0.2842$$

Note: Mean Deviation about Median is the least. Discrete Series

The measure of central tendency Mean or Median or Mode is calculated first. The following formulae are used later.

Mean Deviation (about Mean) =
$$\frac{\sum f |X - \overline{X}|}{N}$$
Mean Deviation about Median =
$$\frac{\sum f |X - \overline{X}|}{N}$$
Mean Deviation about Mode =
$$\frac{\sum f |X - \overline{X}|}{N}$$

		313		
n de	e 9: 2 1 viation	4 6 4 6 for the above (B.	8 10 4 1 data. Com. Bhara	thidasan, N
ıti01				
	f	f X	X - X	$f X - \overline{X} $
	11 11	1 1 1 1 1	$\begin{vmatrix} X - \overline{X} \\ \overline{X} = 6 \end{vmatrix}$	
_	1	2	4	
	4	16	2	4
	6	36	0	. 8
	4	32	2	0
	1	10	4	8 4
	N=	$\Sigma fX =$	1	
	16	96		$\sum \mathbf{f} \mathbf{X} - \mathbf{f} \mathbf{X} - \mathbf{f} $ $= 24$
an,		11070	$\overline{X} = \frac{\sum f X}{N}$	
(11)			IN .	
			$= \frac{96}{16}$	
			= 6	
	11.12		$\Sigma f X$	_ \ \vec{\vec{v}}
ean D	eviatio	n about Mear	$n = \frac{21 X }{N}$	<u>- v </u>
			24	
			$= \frac{24}{16}$	
			= 1.50	

Note: If the coefficient of M.D. about Mean is required,

Coefficient of M.D. about Mean = $\frac{\text{M.D. about Mean}}{\text{Mean}}$ = $\frac{1.50}{6}$ = 0. 2500

Example 10: Calculate all the three mean deviations the corresponding coefficients of mean deviations:

Age (years) : 21 25 27 32 41 46 50 55 No. of Workers: 2 3 10 20 15 10 8 2

	Hul	ulli	111 1	-	a designa	alarah mada sanda		and the same of	
Age	Nu	and the last of th	X = X	1 X = X	1	X MI	X - M	X - Z	X.
	Wor	HEER	X=97.5	11	of	M=36.	,	Z ±32	!
(C)	9	42	16.81	82.62	2	15.5	31.0	11	22
91	1	75	400 004	86.98	ħ	11.5	34.5	7	21
98 97	10	000	4 44 44 4	108.10	15	9.5	95.0	5	50
412		640	87 13 2	106.20	35	4.5	90.0	0	0
41		615	40 40 40	65.85	50	4.5	67.5	9	135
46		460	8,69	86,90	60	9.5	95.0	14	140
50	A	400	12.69	101.52	68	13.5	108.0	18	144
ññ	2	110	17.69	35.38	70	18.5	37.0	23	46
ota	IN =	ŽÍX		zrx - x	[=	Σf	X - M =	Σf	X - Z
	70	261	2	558.00	44	22	558.0	***	558
				bout Me		4 4	$\frac{\zeta}{\zeta} = \frac{558}{70}$ D. about		,
7061	reier	10 01	may a	out Me	an	1	Mean	STATE OF THE PARTY	
						$=\frac{7.9}{37.3}$	7		
						= 0.21			
'osit	ion (of Me	dian is	N	$\frac{+1}{2}$	$= \frac{70 + 2}{2}$	$\frac{1}{2} = 35.$	5	
Aedi	an			(M)	= 35th	$\frac{1}{2}$	6 th iter	n
						$=\frac{32+}{2}$			
						= 36.5			
Mei	ın D	evia	tion abo	ut Medi	an	Σfp	(– M N		
				1		$=\frac{558}{70}$			
						= 7.97			

$$\frac{M.D. \text{ about Median}}{M \text{ edian}}$$

$$= \frac{7.97}{36.5} = 0.2184$$

$$Z = 32$$

$$= \frac{\Sigma f|X-Z|}{N} = \frac{558}{70} = 7.97$$

$$= \frac{M.D. \text{ about Mode}}{M \text{ ode}}$$

$$= \frac{7.97}{32} = 0.2491$$

Total

N =

50

ontinuous Series The measure of central tendency, Mean or Median or Mode, alculated first using the appropriate formula. The formulae msidered in discrete series are used to find the necessary mean viations by introducing m in the place of X.

Example 11: Calculate the mean deviation from the mean for the following data:

Marks: 0-10 10-20 20-30 30-40 40-50 50-60 60-70 No.of 15 7 8 Workers:

orkers.	O S			(C.A. Foun	dation, M 99)
Solut	ion:	N. A.	. 1 1		<u>VI</u>
Marks	No.of	Mid		$m-\overline{X}$	of month.
	Students	. Value			
	f	m	fm	$\bar{X} = 33.40$	$fm-\overline{X}$
0-10	6	5	30	28.40	170.40
10-20	5	15	75	18.40	$92.00 \\ 67.20$
20-30	8	25	200	8.40 1.60	24.00
30-40	15	35	525	11.60	81.20
40-50 50-60	7	45	315 330	21.60	129.60
60-70	6 3	55 65	195	31.60	94.80
Total			Σ fm =	Office	$\sum f m-X =$

 $\sum fm =$

1670

659.20

Mean,
$$\overline{X} = \frac{\Sigma fm}{N} = \frac{1670}{50} = 33.40$$

Mean deviation about Mean $= \frac{\Sigma f \left| m - \overline{X} \right|}{N}$
 $= \frac{659.20}{50}$
 $= 13.18$

Example 12: The following is the age distribution of 80 policy holders insured through an agent:

Age Group	Number of policy holders	Age Group	Number of policy holders
16-20	8	41-45	7
21-25	15	46-50	3
26-30	13	51-55	2
31-35	20	56-60	1
36-40	11		

Calculate mean deviation from the median.

(B.B.A. Bharathidasan, N 98)

Solution:

Age	No. of	True Class	Cum.	Mid	$ \mathbf{m} - \mathbf{M} $	
Group	Policy Holders	Intervals	Freq.	Value		
f			cf	m	M = 31.5	f m-M
16-20	8	15.5-20.5	8	18	13.5	108.0
21-25	15	20.5-25.5	23	23	8.5	127.5
26-30	13	25.5-30.5	36	28	3.5	45.5
31-35	20	30.5-35.5	56 ←	0.0	1.5	30.0
36-40	11	35.5-40.5	67	38		
41-45	7	40.5-45.5	74	43	6.5	71.5
46-50	3	45.5-50.5	77		11.5	80.5
51-55	2	50.5-55.5	79	48	16.5	49.5
56-60	1	55.5-60.5	80	53	21.5	43.0
Total	N=	0010	OU	58	26.5	26.5
	80		•	**	Σf	m – M = 582.0

Example 13 : Calculate

Mean Deviation about Mode and Coefficient of Mean Deviation about Mode

27.5 17.5 22.5 12.5 7.5 2.5 Mid Value : 10 22 19 50 28 Frequency :

Solution :

Mod Value	Frequency	Class	m - Z $Z = 12.2$	f)m - 24
D)	•	0.5	9.7	184.3
2.5	19	0- 5	4.7	131.6
7.5	28	5-10		15.0
12.5	50	10-15	0.3	116.6
17.5	22	15-20	5.3	
22.5	10	20-25	10.3	103.0
L.5	7	25-30	15.3	107.1
Intal	N=	******	****	\(f \rangle - 2 =
1	A A to the second of the second			657 6
-	136	A Paris of the last of the las	AND DESCRIPTION OF THE PARTY OF	

STANDARD DEVIATION

pefinition: Standard Deviation is the root mean deviation of the values from their arithmetic mean.

sp. is the abbreviation and σ (read, sigma) is the symbol. square deviation of the values from their A.M. is indeed and is denoted by σ^2 . S.D. is the positive square of variance. Karl Pearson introduced the concept of odard deviation in 1893. S.D. is also called root mean pare deviation. It is a mathematical deficiency of mean ration to ignore negative sign. Standard deviation possesses at of the desirable properties of a good measure of persion. It is the most widely used absolute measure of persion. The corresponding relative measure is Coefficient variation. It is very popular and so extensively used as a doubt whether there is any other relative measure of persion.

Coefficient of Variation = Standard Deviation × 100
Arithmetic Mean

Example 17: 10 students of B.Com. class of a College have obtained the following marks in Statistics out of 100 marks.

Calculate the standard deviation.

Calculate the standard do 5 6 7 8 9 10 S.No. 1 2 3 4 5 6 7 8 9 10 Marks 5 10 20 25 40 42 45 48 70 80 (B.Com. (C.A.) Bharathiar, A 01

Standard Deviation,
Standard Deviation,
$\Sigma X^2 (\Sigma X)^2$
$\sigma = \sqrt{\frac{\sum X^2}{N} - \left(\frac{\sum X}{N}\right)^2}$
$=\sqrt{\frac{20143}{10}-\left(\frac{385}{10}\right)^2}$
V 10 (10)
$= \sqrt{2014.3 - (38.5)^2}$
1
$= \sqrt{2014.30 - 1482.25}$
$=\sqrt{532.05}$
= 23.07

Method 3: Deviations taken from Assumed Mean.

This is same as the one followed in the calculation of arithmetic mean. But the formula is as follows:

Standard Deviation,
$$\sigma = \sqrt{\frac{\sum d^2}{N} - (\frac{\sum d}{N})^2}$$

d = X - A is preferred when $X - \overline{X}$ are fractions.

Steps:

- 1. Form a table with the given values, X, in the first column.
- 2. Assume any value as A if it is not specified in a problem. It is preferable to assume a value in between the minimum value and the maximum value of X as A.
- 3. Find out the deviation of each value from the assumed mean A and call it d. i.e., find d = X-A and write them in the next column.

- 3. Multiply each fX by the corresponding X to find fc (It is not (fX)2. That is, fX should not be squared) Write all such fX² values in the next column.
 - Find N (= Σf), ΣfX and ΣfX²
 - Substitute in the above formula and simplify.

Example 21 : Calculate the standard deviation.

No.of	d in	a Mat ches	ch	(X) (f)	0	1 2	2 4	3	0	5 2
Solut	ion	CONTRACTOR DESCRIPTION OF THE PERSON OF THE		special .	8	tan	dard	Des	riati	on,
X	f	ſX	CX2	aniaptiki				Eft	(2	(IfX)
0	1	0	0			o . '	٠ ٧	N	produce 140	EIX
1	2	2	2				,	processor	NAME OF THE OWNER,	_
2	4	8	16					$\frac{95}{12}$	129	1
3	3	9	27							. /
4	0	0	0				٠ ٧	7.91	67 -	(24167)
5	2	10	50					7.91	67 -	5.8404
Total	N	$\Sigma \Omega$	I IX	1				2.07	The state of the s	
	=12	=29	m95					4.4		

Method 3: Deviations taken from Assumed Mean. The formula is as follows:

- | 44

Standard Deviation,
$$\sigma = \sqrt{\frac{\Sigma f d^2}{N} - \left[\frac{\Sigma f d}{N}\right]^2}$$

 $d = x - A$ A - Assumed Mean $N = \Sigma f$

Steps:

- 1. Form a table with the given values, X and the frequencies, f in the first two columns.
- 2. Choose the value for A, assumed mean, if it is not specified.
- 3. Subtract A from each X and form the next column with d = X - A values.
- 4. Multiply each d by the corresponding f and enter all such products in the next column under the title fd.
- 5. Multiply each fd by the corresponding d and enter all such products in the next column under the title fd'. (These are not the squares of fd values)

Combined S.D.,
$$\sigma_{12} = \sqrt{\frac{N_1 \sigma_1^2 + N_2 \sigma_2^2 + N_1 d_1^2 + N_2 d_2^2}{N_1 + N_2}}$$

$$= \sqrt{\frac{100 \times 2^2 + 200 \times (2.5)^2 + 100 \times (-0.67)^2 + 200 \times (0.33)^2}{100 + 200}}$$

$$\therefore d_1 = \overline{X}_1 - \overline{X}_{12} = 7.00 - 7.67 = -0.67;$$

$$d_2 = \overline{X}_2 - \overline{X}_{12} = 8.00 - 7.67 = -0.33$$

$$= \sqrt{\frac{400.00 + 1250.00 + 44.89 + 21.78}{300}}$$

$$= \sqrt{\frac{1716.67}{300}}$$

= 2.39

Example 44: From the following price of gold in a week, find the city in which the price was more stable.

Day	Mon	Tues	Wed	Thu	Fri	Sat
City A	498	500	505	504	502	509
City B		505	502	498	496	505

Solution:

 $=\sqrt{5.7222}$

10020				1	
City A	$X_1 - \overline{X}_1$	76,,,,,	City B	$X_2 - \overline{X}_2$	
X_1	$\overline{X}_1 = 503$	$(X_1 - \overline{X}_1)^2$	X_2	$\overline{X}_2 = 501$	$(X_2^-\overline{X}_2^{})^2$
498	-5	25	500	-1	1
500	-3	9	505	4	16
505	2	4	502	1	1
504	1	1	498	-3	9
502	-1	1	496	-5	25
509	6	36	505	4	16
ΣX_1	+ v*-	$\Sigma (X_1 - \overline{X}_1)^2$	ΣX_2		$\Sigma (X_2 - \overline{X}_2)^2$
=3018		=76	=3006		=68

City A
$$X_2$$
 X_2 X_3 X_4 X_4

Coefficient of Variation of price in City B is less. Hence, is price was more stable in City B.

Example 45: Goals scored by two teams A and B in a wies of football matches were observed as follows:

No.of Goals Scored	No.of	Matches	
in a Match	Team A	Team B	
0	5	4	
1	7	5	
2	5	5	
3	3	. 4	
4	2	3	
5	3	3	

Which team, A or B, may be considered as a more consistent

366

Goals	Matches TeamA TeamB		TeamA		Team B	
X	f_1	$\mathbf{f_2}$	f_1X	f_1X^2	f ₂ X	f. ¥2
0	5	4	0	0	0	The same of the sa
1	7	- 5	7	7	5	0
2	5	5	10	20	10	5
3	3	4	9	27	12	20
4	2	3	8	32	12	36 48
5	3	3	15	75	15	75
Total	N ₁ =	N ₂ =	$\Sigma f_1 X$	$\Sigma f_1 X^2$	$\Sigma f_2 X$	$\Sigma f_2 X^2$
	25	24	=49	=161	=54	=184
Team A				Team B		
Iean, $\overline{X}_1 = \frac{\sum f_1 X}{N_1}$			Mean,	$\overline{X}_2 =$	$\frac{\Sigma f_2 X}{N_2}$	
$= \frac{49}{25}$ = 1.96				=	$\frac{54}{24}$ 2.25	
				_	2.25	

$$= 1.96 = 2.25$$

$$S.D., \sigma_2 = \sqrt{\frac{\Sigma f_1 X^2}{N_1} - \left(\frac{\Sigma f_1 X}{N_1}\right)^2} S.D., \sigma_2 = \sqrt{\frac{\Sigma f_2 X^2}{N_2} - \left(\frac{\Sigma f_2 X}{N_2}\right)^2}$$

$$= \sqrt{\frac{161}{25} - \left(\frac{49}{25}\right)^2} = \sqrt{\frac{184}{24} - \left(\frac{54}{24}\right)^2}$$

$$= \sqrt{6.44 - (1.96)^2} = \sqrt{7.6667 - (2.25)^2}$$

$$= \sqrt{6.4400 - 3.8416} = \sqrt{7.6667 - 5.0625}$$

$$= \sqrt{2.5984} = 1.61$$

$$= 1.61$$

C.V.₁ =
$$\frac{\sigma_1}{\overline{X}_1} \times 100$$
 C.V.₂ = $\frac{\sigma_2}{\overline{X}_2} \times 100$
= $\frac{1.61}{1.96} \times 100$ = $\frac{1.61}{2.25} \times 100$
= 82.14 = 71.56

Coefficient of variation of Team B is less. Hence, Team B is the more consistent team.